3.8 Review

Molecular mechanisms of (recovery) sleep: lessons from Drosophila melanogaster

期刊

CURRENT OPINION IN PHYSIOLOGY
卷 15, 期 -, 页码 192-196

出版社

ELSEVIER
DOI: 10.1016/j.cophys.2020.03.005

关键词

-

资金

  1. Finska Lakaresallskapet
  2. Gyllenberg Foundation

向作者/读者索取更多资源

One of the key features of sleep is that if the duration of a waking period is prolonged, the following sleep period will be longer, including more slow-wave activity. This homeostasis is explained by production of sleep pressure that accumulates during the waking period. It is generally accepted that neuronal activity, in one way or other, is the driving force for accumulation of sleep pressure, both during spontaneous sleep-wake cycle and during prolonged wakefulness. Prolonged wakefulness is associated with increased energy consumption, production of danger signals and modulations in neural plasticity. Data derived from experiments with Drosophila melanogaster introduces a fascinating window to the basic mechanisms of sleep and sleep homeostasis, and undoubtedly sheds light to the mechanisms of sleep regulation also in humans. However, the existence of substantial cortex, which is regarded as a key actor in mammalian NREM sleep regulation, will add to the complexity of the regulatory circuits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据