4.7 Article

Cold Treatment Induces Transient Mitochondrial Fragmentation in Arabidopsis thaliana in a Way that Requires DRP3A but not ELM1 or an ELM1-Like Homologue, ELM2

期刊

出版社

MDPI
DOI: 10.3390/ijms18102161

关键词

mitochondrial fission; dynamin; plant mitochondria; mitochondrial division

资金

  1. Japanese Science and Technology Agency (PRESTO)
  2. Japan Society for the Promotion of Science
  3. Ministry of Education, Culture, Sports, Science, and Technology of JAPAN [24248001, 23120507, 24380814]

向作者/读者索取更多资源

The number, size and shape of polymorphic plant mitochondria are determined at least partially by mitochondrial fission. Arabidopsis mitochondria divide through the actions of a dynamin-related protein, DRP3A. Another plant-specific factor, ELM1, was previously shown to localize DRP3A to mitochondrial fission sites. Here, we report that mitochondrial fission is not completely blocked in the Arabidopsis elm1 mutant and that it is strongly manifested in response to cold treatment. Arabidopsis has an ELM1 paralogue (ELM2) that seems to have only a limited role in mitochondrial fission in the elm1 mutant. Interestingly, cold-induced mitochondrial fragmentation was also observed in the wild-type, but not in a drp3a mutant, suggesting that cold-induced transient mitochondrial fragmentation requires DRP3A but not ELM1 or ELM2. DRP3A: GFP localized from the cytosol to mitochondrial fission sites without ELM1 after cold treatment. Together, these results suggest that Arabidopsis has a novel, cold-induced type of mitochondrial fission in which DRP3A localizes to mitochondrial fission sites without the involvement of ELM1 or ELM2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据