4.6 Article

MbGWO-SFS: Modified Binary Grey Wolf Optimizer Based on Stochastic Fractal Search for Feature Selection

期刊

IEEE ACCESS
卷 8, 期 -, 页码 107635-107649

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.3001151

关键词

Feature extraction; Optimization; Machine learning algorithms; Fractals; Benchmark testing; Search problems; Machine learning; Feature selection; meta-heuristics; stochastic fractal search; binary optimizer; K-Nearest Neighbor; Wilcoxon's rank-sum test

向作者/读者索取更多资源

Grey Wolf Optimizer (GWO) simulates the grey wolves' nature in leadership and hunting manners. GWO showed a good performance in the literature as a meta-heuristic algorithm for feature selection problems, however, it shows low precision and slow convergence. This paper proposes a Modified Binary GWO (MbGWO) based on Stochastic Fractal Search (SFS) to identify the main features by achieving the exploration and exploitation balance. First, the modified GWO is developed by applying an exponential form for the number of iterations of the original GWO to increase the search space accordingly exploitation and the crossover/mutation operations to increase the diversity of the population to enhance exploitation capability. Then, the diffusion procedure of SFS is applied for the best solution of the modified GWO by using the Gaussian distribution method for random walk in a growth process. The continuous values of the proposed algorithm are then converted into binary values so that it can be used for the problem of feature selection. To ensure the stability and robustness of the proposed MbGWO-SFS algorithm, nineteen datasets from the UCI machine learning repository are tested. The K-Nearest Neighbor (KNN) is used for classification tasks to measure the quality of the selected subset of features. The results, compared to binary versions of the-state-of-the-art optimization techniques such as the original GWO, SFS, Particle Swarm Optimization (PSO), hybrid of PSO and GWO, Satin Bowerbird Optimizer (SBO), Whale Optimization Algorithm (WOA), Multiverse Optimization (MVO), Firefly Algorithm (FA), and Genetic Algorithm (GA), show the superiority of the proposed algorithm. The statistical analysis by Wilcoxon's rank-sum test is done at the 0.05 significance level to verify that the proposed algorithm can work significantly better than its competitors in a statistical way.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据