4.6 Article

Hypothermia inhibits the proliferation of bone marrow-derived mesenchymal stem cells and increases tolerance to hypoxia by enhancing SUMOylation

期刊

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE
卷 40, 期 6, 页码 1631-1638

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/ijmm.2017.3167

关键词

small ubiquitin-like modifiers; SUMO ylation; therapeutic hypothermia; stress; bone marrow-derived mesenchymal stem cells

资金

  1. National Natural Science Foundation of China [81471175]
  2. Tianjin Health Bureau Science and Technology Projects [2014KY23]

向作者/读者索取更多资源

Hypothermia therapy has a positive effect on patients with severe brain injury. Recent studies have shown that mild hypothermia increases the survival of bone marrow-derived mesenchymal stem cells (BMSCs) in a hypoxic environment; however, the underlying mechanisms are not yet fully understood. Small ubiquitin-like modifiers (SUMOs) are sensitive to temperature stress reactions and are considered to exert a protective effect. In this study, we examined the protective effects of hypothermia on BMSCs in terms of SUMO protein modification. First, we found that mild hypothermia inhibited the proliferation and differentiation of BMSCs and increased cell tolerance to a hypoxic environment. Second, hypothermia significantly increased the levels of SUMO modification of multiple proteins in BMSCs. The knockdown of SUMO 1/2/3 induced the rapid aging of the BMSCs, while the inhibition of the SUMO-conjugating enzyme, Ubc9, reduced cell proliferation and increased the proportion of BMSCs differentiating into nerve cells. Moreover, the tolerance of BMSCs to the hypoxic environment was significantly decreased. Lastly, we investigated 4 reported SUMO target proteins, anti-proliferating cell nuclear antigen, octamer-binding transcription factor 4, p53 and hypoxia-inducible factor-1 alpha, to confirm that SUMO modification was indeed involved in maintaining the proliferation, inhibiting differentiation and enhancing the resistance of BMSCs against adverse conditions. Taken together, our results indicate that the SUMO pathway is involved in the response to hypothermic stress, and that SUMOylation may be an important protective mechanism against hypothermia for the survival of BMSCs under unfavorable conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据