4.8 Article

Size- and temperature-dependent photoluminescence spectra of strongly confined CsPbBr3quantum dots

期刊

NANOSCALE
卷 12, 期 24, 页码 13113-13118

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nr02711a

关键词

-

资金

  1. National Science Foundation [CHE-1836538]
  2. Institute for Basic Science [IBS-R026-D1]
  3. Gordon and Betty Moore Foundation [GBMF6882]
  4. Welch Foundation [A-1886]
  5. National Research Foundation of Korea [IBS-R026-D1-2020-A00] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Lead-halide perovskite nanocrystals (NCs) are receiving much attention as a potential high-quality source of photons due to their superior luminescence properties in comparison to other semiconductor NCs. To date, research has focused mostly on NCs with little or no quantum confinement. Here, we measured the size- and temperature-dependent photoluminescence (PL) from strongly confined CsPbBr(3)quantum dots (QDs) with highly uniform size distributions, and examined the factors determining the evolution of the energy and linewidth of the PL with varying temperature and QD size. Compared to the extensively studied II-VI QDs, the spectral position of PL from CsPbBr(3)QDs shows an opposite dependence on temperature, with weaker dependence overall. On the other hand, the PL linewidth is much more sensitive to the temperature and size of the QDs compared to II-VI QDs, indicating much stronger coupling of excitons to the vibrational degrees of freedom both in the lattice and at the surface of the QDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据