4.7 Article Proceedings Paper

2DOF CFD calibrated wake oscillator model to investigate vortex-induced vibrations

期刊

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
卷 127, 期 -, 页码 176-190

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2016.05.019

关键词

-

资金

  1. National Subsea Research Institute (NSRI) UK

向作者/读者索取更多资源

In this study a new two degrees-of-freedom wake oscillator model is proposed to describe vortex-induced vibrations of elastically supported cylinders capable of moving in cross-flow and in-line directions. The total hydrodynamic force acting on the cylinder is obtained here as a sum of lift and drag forces, which are defined as being proportional to the square of the magnitude of the relative flow velocity around the cylinder. The two van der Pol type oscillators are then used to model fluctuating drag and lift coefficients. As the relative velocity around the cylinder depends both on the fluid flow velocity and the velocity of the cylinder, the equations of motions of the cylinder in cross-flow and in-line directions become coupled through the fluid forces. It is shown that such approximation of the fluid forces allows to obtain the well known low dimensional models in the limit case, and the model proposed by Facchinetti et al. [1] to describe the cross-flow vibrations is used as an example. Existing experimental data and Computational Fluid Dynamics (CFD) results are used to calibrate the proposed model and to verify the obtained predictions of complex fluid-structure interactions for different mass ratios. The super upper branch phenomenon, exclusive for a two degrees-of-freedom motion at low mass ratios, has been observed. The influence of the empirical parameters of the wake oscillators and fluid forces coefficients on the dynamic responses is also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据