4.6 Article

Organic polymeric filler-amorphized poly(ethylene oxide) electrolyte enables all-solid-state lithium-metal batteries operating at 35 °C

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 8, 期 26, 页码 13351-13363

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta00335b

关键词

-

资金

  1. National Natural Science Foundation of China [21875155, 21703185, 51675275, 21473119]
  2. Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Suzhou, China
  3. Leading Project Foundation of Science Department of Fujian Province [2018H0034]
  4. Shenzhen Science and Technology Planning Project [JCYJ20170818153427106]

向作者/读者索取更多资源

The poor ionic conductivity and high working temperatures (normally >60 degrees C) of poly (ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) greatly limit their application in all-solid-state batteries. To mitigate these issues, for the first time, we report here an organic polymer filler, hydrolyzed polymaleic anhydride (HPMA), that can greatly suppress PEO crystallinity, enhance the ionic conductivity of PEO-based SPEs (1.13 x 10(-4)S cm(-1)at 35 degrees C) and support battery operation at 35 degrees C. PEO-HPMA SPEs feature high flexibility, incombustibility, wide electrochemical operating window and stability against lithium. The as-derived Li/PEO-HPMA/LiFePO(4)all-solid-state batteries show outstanding rate capability, high reversible capacity and long-term stability up to 1250 cycles. More impressively, the soft-packaged Li/PEO-HPMA/LiFePO(4)cells show high safety under various extreme conditions such as cutting and perforation. The PEO-HPMA SPE-based quasi-solid-state lithium-sulfur batteries are also presented. This work demonstrates a facile approach that unlocks the low-temperature application of PEO SPE-based all-solid-state batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据