4.6 Article

Superfast and efficient hydrogen gas sensor using PdAualloy@ZnO core-shell nanoparticles

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 8, 期 26, 页码 12968-12974

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta03552a

关键词

-

资金

  1. BK21 plus program from the Ministry of Education and Human-Resource Development, South of Korea
  2. National Research Foundation of Korea (NRF) - Korean government (MSIP) [2015042417, 2016R1A2B4014090]
  3. National Research Foundation of Korea [22A20130000046] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

For ensuring the safety use of renewable hydrogen energy sources, it is urgently demanded to design rapid and sensitive sensors to detect leakage. In this study, we have successfully prepared highly responsive, stable, and selective sensors for hydrogen gas using PdAualloy@ZnO core-shell nanoparticles (CSNPs). The fabricated core-shell sensors exhibit superior hydrogen sensing activity as compared to pure ZnO. In particular, the Pd35Au65@ZnO sensor shows the highest response (80), fastest response/recovery times (0.6/12.0 min), and lowest optimal working temperature (300 degrees C) towards 100 ppm hydrogen. The improved hydrogen sensing can be attributed to the following: (1) the oxidation of Pd metal in the alloy cores is significantly limited, which in turn increases the interaction between Pd and the target gas; (2) the content of active oxygen species is enriched in the presence of the Au metal; (3) the PdAu alloy cores have excellent selective capability towards hydrogen gas as they produce PdH(x)compounds; and (4) the synergistic combination between Pd, Au, and ZnO parts can further speed the response and recovery times for the PdAualloy@ZnO core-shell sensors. This work provides a new approach for designing versatile hydrogen sensors using alloy@oxide core-shell nanostructures accordingly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据