4.7 Article

Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 42, 期 38, 页码 23986-23994

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2017.07.184

关键词

Alkaline electrolysis; Electrochemical impedance spectroscopy; Zero gap; Porous electrodes; Renewable energy storage

资金

  1. Welsh Government Ser Cymru Programme

向作者/读者索取更多资源

The efficiency of an alkaline electrolysis cell depends strongly on its internal cell resistance, which becomes the dominant efficiency driver at high current densities. This paper uses Electrochemical Impedance Spectroscopy to decouple the ohmic resistance from the cell voltage, and, for the first time, quantify the reduction in cell resistance achieved by employing a zero gap cell configuration when compared to the conventional approach. A 30% reduction in ohmic resistance is demonstrated for the zero gap cell when compared to a more conventional design with a 2 mm electrode gap (in 1 M NaOH and at standard conditions). The effect on the ohmic resistance of operating parameters, including current density and temperature, is quantified; the zero gap cell outperforms the standard cell at all current densities, particularly above 500 mA.cm(-2) Furthermore, the effect of electrode morphology on the ohmic resistance is investigated, showing that high surface area foam electrodes permit a lower ohmic resistance than coarser mesh electrodes. These results show that zero gap cell design will allow both low cost and highly efficient alkaline electrolysis, which will become a key technology for short term and inter-seasonal energy storage and accelerate the transition towards a decarbonised society. Crown Copyright (C) 2017 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据