4.7 Article

Hydrogen gas separation with controlled selectivity via efficient and cost effective block copolymer coated PET membranes

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 42, 期 31, 页码 19977-19983

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2017.06.113

关键词

Block copolymer; Gas separation; Nanoporous membrane; PET

资金

  1. DST, New Delhi [ECR/2016/001780]
  2. DST-INSPIRE faculty award
  3. Alexander von Humboldt Foundation, Germany [3.2-INI/1133638 STP]

向作者/读者索取更多资源

An efficient way is suggested to reduce the cost of block copolymer (BC) membranes while still taking advantage of their unique properties. It is demonstrated that selectivity can be kept almost the same whereas permeability is varied by using thin copolymer films on robust porous PET polymer membranes which acts as a mechanical support. So, a nanoscopic thin selective layer of the block copolymer (PS-b-P4VP) with additive is tasted on the PET porous support. Selective extraction of the additive from the block copolymer thin films leads to the formation of a layer with monodispersed pores on the PET support. Measurements of the gas permeability of PET membranes of different pore size with and without block copolymer coating reveal that permeabilities of BC coated membranes decrease whereas selectivities slightly increase in comparison to the porous PET support. Coating of the membranes with BC plays a valuable role for the selectivity against gases like H-2 over CO2. The surface morphology of the composite membranes has been determined by atomic force microscopy (AFM) showing the nanoscopic pores. Due to excellent mechanical stability and easy scale up, such membranes may be used in the gas separation technology. (C) 2017 Hydrogen Energy Publications LLC. Published'by Elsevier ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据