3.9 Article

Characterization of oscillation amplitude of contact angle during AC electrowetting of water droplets

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2399-6528/ab9ea1

关键词

electrowetting; droplet; contact angle; oscillations; AC frequency

资金

  1. National Science Foundation [CBET-1805179, CBET-1605789]

向作者/读者索取更多资源

Most studies on electrowetting (EW) involve the use of AC electric fields, which cause droplets to oscillate in response to the sinusoidal waveform. Oscillation-driven mixing in droplets is the basis for multiple microfluidic applications. Presently, we study the voltage and AC frequency-dependent oscillations of electrowetted water droplets on a smooth, hydrophobic surface. We introduce a new approach towards analyzing droplet oscillations, which involves characterization of the oscillation amplitude of the contact angle (CA). An experimentally validated, fundamentals-based model to predict voltage and frequency-dependent CA oscillations is developed, which is analogous to the Lippmann's equation for predicting voltage-dependent CAs. It is seen that this approach can help estimate the threshold voltage more accurately, than from experimental measurements of CA change. Additionally, we use a coplanar electrode configuration with high voltage and ground electrodes arranged on the substrate. This configuration eliminates measurement artefacts in the classical EW configuration associated with a wire electrode protruding into the droplet. An interesting consequence of this configuration is that the system capacitance is reduced substantially, compared to the classical configuration. The coplanar electrode configuration shows a reduced rate of CA change with voltage, thereby increasing the voltage range over which the CA can be modulated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据