4.7 Article

Effects of H2O and CO2 on the homogeneous conversion and heterogeneous reforming of biomass tar over biochar

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 42, 期 18, 页码 13070-13084

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2017.04.018

关键词

Tar; Biochar; H2O; CO2; Homogeneous conversion; Heterogeneous reforming

资金

  1. Collaborative Innovation Center of Clean Coal Power Plant with Poly-generation
  2. National Science and Technology [2014BAA02B03]
  3. National Natural Science Foundation [51421063]
  4. CSC scholar [201606120135, 201606120136]

向作者/读者索取更多资源

The effects of H2O and CO2 reforming agents on the homogeneous conversion and heterogeneous reforming of biomass tar were studied in the presence of a biochar catalyst to better understand the transformation pathway between tar and biochar. Catalysis was performed in a two-stage fluidized bed/fixed bed reactor while Raman analysis and Gas Chromatograph-Mass Spectrometry were used to investigate biochar and tar characteristics. The results show temperatures of 700-900 degrees C are required for the homogeneous transformation of tar in the presence of H2O/CO2, which especially affect polycyclic aromatic hydrocarbons. The tar homogeneous reforming effect of 15 vol.% H2O is significantly higher than that of 29 vol.% CO2. During heterogeneous reforming of tar over biochar at 800 degrees C, the tar yield decreases in varying degrees with the H2O and CO2 concentration increasing. H2O and CO2 not only directly affect the tar transformation on biochar, but also indirectly influence the reforming of tar through changing the structure of biochar catalyst. The formation of additional oxygen-containing functional groups and transformation of small aromatic rings to larger aromatic rings in the biochar structure are promoted with the concentration of H2O and CO2 increasing. Under a H2O/CO2 atmosphere, a higher degree of aromatic ring heterogeneous reforming occurs over biochar than for non-aromatic tar components. Heterogeneous reforming reactivity of tar is promoted by the biomass tar structure (e.g the substituents, large aromatic ring size and five-carbon ring structures) over biochar under H2O/CO2 atmospheres. Further increasing H2O and CO2 concentration enhances this effect. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据