4.6 Article

Zero-noise extrapolation for quantum-gate error mitigation with identity insertions

期刊

PHYSICAL REVIEW A
卷 102, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.102.012426

关键词

-

资金

  1. U.S. Department of Energy, Office of Science [DE-AC02-05CH11231]
  2. Quantum Information Science Enabled Discovery (QuantISED) for High Energy Physics [KA2401032]
  3. Office of Advanced Scientific Computing Research (ASCR) through the Accelerated Research for Quantum Computing Program

向作者/读者索取更多资源

Quantum-gate errors are a significant challenge for achieving precision measurements on noisy intermediate-scale quantum (NISQ) computers. This paper focuses on zero-noise extrapolation (ZNE), a technique that can be implemented on existing hardware, studying it in detail and proposing modifications to existing approaches. In particular, we consider identity insertion methods for amplifying noise because they are hardware agnostic. We build a mathematical formalism for studying existing ZNE techniques and show how higher order polynomial extrapolations can be used to systematically reduce depolarizing errors. Furthermore, we introduce a method for amplifying noise that uses far fewer gates than traditional methods. This approach is compared with existing methods for simulated quantum circuits. Comparable or smaller errors are possible with fewer gates, which illustrates the potential for empowering an entirely new class of moderate-depth circuits on near term hardware.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据