4.7 Article

Exergoeconomic optimization of a new four-step magnesium-chlorine cycle

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 42, 期 4, 页码 2435-2445

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2016.03.098

关键词

Hydrogen production; Mg-Cl cycle; Hybrid thermochemical water splitting; Exergoeconomics; Optimization

向作者/读者索取更多资源

In this study, an exergy based economic assessment of the four step Mg-Cl cycle is performed and compared with other hybrid thermochemical cycles. The exergy values of streams are utilized to analyse the cost rate of all streams and component based cost rates of exergy destructions. A multi-objective optimization of the cycle is conducted to maximize the performance and hence minimize the cost of the cycle by using Genetic Algorithm (GA). The results of exergoeconomic analyses for the base design of the Mg-Cl cycle give energy and exergy efficiency values of 44.3% and 53%, respectively, an annual plant cost of $458.5 million, and a hydrogen production cost rate of 3.67 $/kg for a 172.8 tons of daily H-2 production. The multi-objective optimization results indicate an increase in exergy efficiency (56.3%), and decrease in total annual plant cost ($409.3 million). The results of both thermodynamic and thermoeconomic analyses indicate that the final design of the Mg-Cl cycle shows lower hydrogen cost results than that of the Hybrid-sulfur Cycle (HyS) and shows a similar trend with the hybrid Copper Chlorine (Cu-Cl) cycle. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据