4.8 Article

Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 13, 期 7, 页码 2124-2133

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ee01052a

关键词

-

资金

  1. SFI AMBER
  2. SFI PIYRA
  3. ERC StG 2DNanoCaps
  4. ERC PoC 2DUSD
  5. ERC PoC 2DInk
  6. FP7 MC ITN MoWSeS
  7. Horizon2020 NMP Co-Pilot
  8. ERC SEMANTICS
  9. SFI [11/PI/1087, 15/SIRG/3329]
  10. Fundamental Research Funds for the Central Universities [YJ201886]
  11. National Natural Science Foundation of China [501902215]

向作者/读者索取更多资源

As a recent addition to the family of van der Waals layered crystals, indium selenide (InSe) possesses unique optoelectronic and photonic properties, enabling high-performance electronic devices for broad applications. Nevertheless, the lithium storage behavior of InSe flakes is thus largely unexplored due to its low electronic conductivity and challenges associated with its exfoliation. Here, we prepare few-layered InSe flakes through liquid-phase exfoliation of wet-chemistry-synthesized layered InSe single crystals, and percolate the flakes with carbon nanotube (CNT) networks in order to form flexible anodes to store lithium (Li). We demonstrate, with the support of CNTs, that exfoliated InSe flakes possess superior Li storage capacity to bulk InSe; the capacity increases over prolonged cycling up to 1224 mA h g(-1)from 520 mA h g(-1), coupled with excellent rate handling properties and long-term cycling stability. The operando X-ray diffraction results suggest that the alloying of indium with Li dominates the Li storage reactions. By combining with density-functional theory calculations and post-mortem analysis, we believe that thein situformed indium gradually reduces the domain size, forming nanoclusters which allow the accommodation of 4 Li(+)per atomic indium, and leading to extra capacity beyond the traditional theoretical value. This new nanoscluster alloying Li storage mechanism may inspire new architectures or methods to synthesize few-layered InSe, thereby presenting broad opportunities for high-performance Li-ion battery anode technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据