4.7 Article

Study on biomass derived activated carbons for adsorptive heat pump application

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2017.02.081

关键词

Activated carbon; Adsorption heat pump; Adsorption isotherm; Biomass; Ethanol

资金

  1. Program for Leading Graduate School, Green Asia Education Center, Kyushu University, Japan

向作者/读者索取更多资源

Biomasses are renewable resources and suitable precursors for synthesis of activated carbons (ACs). Two biomass sources: (i) Waste Palm Trunk (WPT) and (ii) Mangrove (M) are employed to synthesis activated carbons with huge surface area by chemical activation with potassium hydroxide (KOH). Thermophysical characteristics of the derived activated carbons namely thermal conductivity, particle size distribution, pore size distribution, surface area and pore volume are assessed. The total surface area of WPT-derived AC and mangrove-derived AC are found to be as high as 2927 m(2) g(-1) and 2924 m(2) g(-1), respectively. The adsorption capacities of the synthesized biomass-derived ACs for ethanol are evaluated for assorted temperature and pressure conditions. It is observed that WPT-AC shows an ethanol uptake of 1.90 kg kg(-1) whilst the M-AC can adsorb up to 1.65 kg kg(-1). The isosteric heat of adsorption associated with the present adsorbents/adsorbate (ACs/ethanol) calculated at different coverages showed only marginal difference. For a typical operating condition of adsorption heat pump, both biomass derived ACs showed similar net ethanol uptake which is significantly higher than the net uptake of commercially prevalent Maxsorb III AC. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据