4.6 Article

Bio-inspired SiO2-hard-template reconstructed g-C3N4nanosheets for enhanced photocatalytic hydrogen evolution

期刊

CATALYSIS SCIENCE & TECHNOLOGY
卷 10, 期 14, 页码 4655-4662

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cy00321b

关键词

-

资金

  1. National Natural Science Foundation of China [51574205]
  2. National Key Research and Development Program of China [2016YFA02030000]
  3. Natural Science Foundation of Guangdong Province [2018B030311022]
  4. Guangdong Innovation Research Team for Higher Education [2017KCXTD030]
  5. Innovative Research Team (in Science and Technology) in University of Henan Province (IRTSTHN) [19IRTSTHN028]
  6. High-level Talents Project of Dongguan University of Technology [KCYKYQD2017017]
  7. Engineering Research Center of None-Food Biomass Efficient Pyrolysis & Utilization Technology of Guangdong Higher Education Institutes [2016GCZX009]
  8. Dongguan University of Technology [G200906-17]
  9. Postdoctoral Science Foundation [2019M652570, 2019M652574]
  10. Postdoctoral Research Sponsorship in Henan Province [19030025]

向作者/读者索取更多资源

Building architectures to manipulate light propagation using a light-conversion matrix is one of the most competitive strategies to enhance photocatalytic performance. In this work, a bio-inspired SiO(2)hard template with interconnected SiO(2)with a one-dimensional structure was devised to enhance the visible light harvesting ability of g-C3N4, and the SiO2/g-C(3)N(4)nanocomposite is cleverly synthesizedviaanin situthermal polymerization method. Based on UV-vis diffuse reflectance spectrometry (UV-vis DRS) and finite difference time domain simulation (FDTD) measurements, it is found that the SiO2/g-C(3)N(4)nanocomposite displays obviously enhanced visible light absorption and light-scattering when compared to pristine g-C3N4, suggesting it has highly enhanced light harvesting ability. As expected, SiO2/g-C(3)N(4)displays a remarkable enhancement in photocatalytic H(2)production when compared to bare g-C3N4. Such enhancement is attributed to the synergistic effect of g-C(3)N(4)and SiO(2)hard template microstructures. The SiO(2)one-dimensional structure not only enhances light scattering to widen the visible-light absorption range and improve the utilization efficiency of solar energy, but it also increases the specific surface area of g-C(3)N(4)by reducing its aperture size. This research has far-reaching implications for increasing the use of sunlight and improving the development of hydrogen energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据