4.6 Article

Magnetic topological insulator MnBi6Te10 with a zero-field ferromagnetic state and gapped Dirac surface states

期刊

PHYSICAL REVIEW B
卷 102, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.102.035144

关键词

-

资金

  1. National Key R&D Program of China [2018YFE0202600, 2016YFA0300504, 2016YFA0300600, 2016YFA0401000]
  2. National Natural Science Foundation of China [11574394, 11974395, 11774423, 11822412, 11622435, U1832202, 11888101]
  3. Fundamental Research Funds for the Central Universities
  4. Research Funds of Renmin University of China (RUC) [15XNLQ07, 18XNLG14, 19XNLG17, 20XHN062]
  5. Chinese Academy of Sciences [QYZDB-SSW-SLH043, XDB28000000, XDB33000000]
  6. Beijing Municipal Science & Technology Commission [Z171100002017018, Z181100004218005]
  7. JSPS KAKENHI [JP18H01165, JP19H00651]
  8. JSPS [19F19030]
  9. Grants-in-Aid for Scientific Research [19F19030] Funding Source: KAKEN

向作者/读者索取更多资源

Magnetic topological insulators (TIs) with nontrivial topological electronic structure and broken time-reversal symmetry exhibit various exotic topological quantum phenomena. The realization of such exotic phenomena at high temperature is one of the central topics in this area. We reveal that MnBi6Te10 is a magnetic TI with an antiferromagnetic ground state below 10.8 K whose nontrivial topology is manifested by Dirac-like surface states. The ferromagnetic axion insulator state with Z(4) = 2 emerges once spins are polarized at a field as low as 0.1 T, accompanied with saturated anomalous Hall resistivity up to 10 K. Such a ferromagnetic state is preserved even with an external field down to zero at 2 K. Theoretical calculations indicate that the fewlayer ferromagnetic MnBi6Te10 is also topologically nontrivial with a nonzero Chern number. Angle-resolved photoemission spectroscopy experiments further reveal three types of Dirac surface states arising from different terminations on the cleavage surfaces, one of which has insulating behavior with an energy gap of similar to 28 meV at the Dirac point. These outstanding features suggest that MnBi6Te10 is a promising system to realize various topological quantum effects at zero field and high temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据