4.7 Article

A combined method for solving 2D incompressible flow and heat transfer by spectral collocation method and artificial compressibility method

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2017.04.051

关键词

Incompressible flow and heat transfer; Spectral collocation method; Artificial compressibility method; SCM-ACM; Exact solution

资金

  1. Natural Science Foundation of China (NSFC) [11402180, 11302047]

向作者/读者索取更多资源

A combined method is developed for solving 2D steady incompressible flow and heat transfer by spectral collocation method (SCM) and artificial compressibility method (ACM). Instead of the steady governing equations, the unsteady artificial compressibility equations are introduced and solved. The steady results can be obtained by solving the unsteady equations when the pressure, velocity and temperature time derivatives approach to zero. The partial differential equations are discretized by SCM with Chebyshev polynomial and the spatial domain is discretized by the Chebyshev-Gauss-Lobbatto (CGL) collocation points. The artificial compressibility parameter c is investigated and determined firstly. Then, the accuracy of the SCM-ACM is tested by solving an exact solution with three time schemes (explicit scheme, implicit scheme and fourth order explicit Runge-Kutta scheme). Lastly, two classical cases (the lid driven cavity flow and natural convection in a square cavity) are solved by the SCM-ACM with explicit scheme. The results show that the SCM-ACM can be used for the solving of incompressible flow and heat transfer, and high accuracy can be achieved after some calculation steps by the SCM-ACM especially with the fourth order explicit Runge-Kutta scheme. The SCM-ACM inherits the characteristics of exponential convergence and high accuracy from spectral method, and it is simplified, efficient and easy to implement which derives from the ACM. The SCM-ACM provides a new selection for the solution of incompressible flow and heat transfer. (c) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据