3.9 Article

A Three Dimensional Unit Cell Model for the Analysis of Thermal Residual Stresses in Polymer Composites Reinforced with Wavy Carbon Nanotubes

期刊

MRS ADVANCES
卷 5, 期 33-34, 页码 1739-1748

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/adv.2019.440

关键词

composite; microstructure; thermal stresses; modeling

向作者/读者索取更多资源

This paper presents a numerical approach to predict the thermal residual stresses in polymer nanocomposites reinforced with a periodic array of wavy carbon nanotubes. A three dimensional unit cell model is established to accurately account for the waviness of the nanotube. Periodic boundary conditions are determined for the unit cell with a pair of curved surfaces. Appropriate methods to evaluate the macroscopic stresses and strains are also determined for the unit cell model in which the interior pores of the nanotubes are explicitly included. It is demonstrated that the macroscopic behavior of the nanocomposites is orthotropic due to the symmetries manifested. By employing material properties of the two constituents, the thermal residual stresses and strains induced by high temperature curing and cooling-down are predicted for an epoxy/wavy-nanotube composite. It is also demonstrated that the curing process tends to increase the waviness of the nanotube and the waviness has a significant influence on the distribution of the microscopic residual stresses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据