4.6 Article

Local matrix product operators: Canonical form, compression, and control theory

期刊

PHYSICAL REVIEW B
卷 102, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.102.035147

关键词

-

资金

  1. NSF Graduate Research Fellowship Program [NSF DGE 1752814]
  2. ERC synergy Grant UQUAM
  3. DOE [DE-SC001938]
  4. DOE, office of Basic Energy Sciences [DEAC02-05-CH11231]

向作者/读者索取更多资源

We present a new method for compressing matrix product operators (MPOs) which represent sums of local terms, such as Hamiltonians. Just as with area law states, such local operators may be fully specified with a small amount of information per site. Standard matrix product state (MPS) tools are ill-suited to this case, due to extensive Schmidt values that coexist with intensive ones, and Jordan blocks in the transfer matrix. We ameliorate these issues by introducing an almost Schmidt decomposition that respects locality. Our method is e-close to the accuracy of MPS-based methods for finite MPOs, and extends seamlessly to the thermodynamic limit, where MPS techniques are inapplicable. In the framework of control theory, our method generalizes Kung's algorithm for model order reduction. Several examples are provided, including an all-MPO version of the operator recursion method (Lanczos algorithm) directly in the thermodynamic limit. All results are accompanied by practical algorithms, well-suited for the large MPOs that arise in DMRG for long-range or quasi-2D models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据