4.8 Article

Crystal Site Feature Embedding Enables Exploration of Large Chemical Spaces

期刊

MATTER
卷 3, 期 2, 页码 433-448

出版社

CELL PRESS
DOI: 10.1016/j.matt.2020.04.016

关键词

-

资金

  1. Samsung Advanced Institute of Technology
  2. Ontario Research Foundation
  3. Natural Sciences and Engineering Research Council of Canada
  4. Canada Foundation for Innovation under the Compute Canada
  5. Government of Ontario
  6. Ontario Research Fund - Research Excellence
  7. University of Toronto
  8. Federal Economic Development Agency of Southern Ontario
  9. Province of Ontario
  10. IBM Canada
  11. Ontario Centers of Excellence
  12. Mitacs
  13. MCF program
  14. AI4D program

向作者/读者索取更多资源

Mapping materials science problems onto computational frameworks suitable for machine learning can accelerate materials discovery. Combining proposed crystal site feature embedding (CSFE) representation with convolutional and extensive deep neural networks, we achieve a low mean absolute test error of 3.7 meV/atom and 0.069 eV on density functional theory energies and band gaps of mixed halide perovskites. We explore how a small amount of cadmium doping can potentially be applied in solar cell design and sample the large chemical space by using a variational autoencoder to discover interesting perovskites with band gaps in the ultraviolet and infrared. Additionally, we use CSFE to explore chemical spaces and small doping concentrations beyond those used for training. We further show that CSFE has a mean absolute test error of 7 meV/atom and 0.13 eV for total energies and band gaps for 2D perovskites and discuss its adaptability for exploration of an even wider variety of chemical systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据