4.7 Article

Liquid cooling based on thermal silica plate for battery thermal management system

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 41, 期 15, 页码 2468-2479

出版社

WILEY
DOI: 10.1002/er.3801

关键词

battery thermal management; liquid cooling; maximum temperature; thermal silica plate

资金

  1. Science and Technology Planning Project of Guangdong Province, China [2014B010128001]
  2. South Wisdom Valley Innovative Research Team Program [2015CXTD07]

向作者/读者索取更多资源

To achieve safe, long lifetime, and high-performance lithium-ion batteries, a battery thermal management system (BTMS) is indispensable. This is especially required for enabling fast charging-discharging and in aggressive operating conditions. In this research, a new type of battery cooling system based on thermal silica plates has been designed for prismatic lithium-ion batteries. Experimental and simulations are combined to investigate the cooling capability of the BTMS associated to different number of cooling channels, flow rates, and flow directions while at different discharge C-rates. Results show that the maximum temperature reached within the battery decreases as the amount of thermal silica plates and liquid channels increases. The flow direction had no significant influence on the cooling capability. While the performance obviously improves with the increase in inlet flow rate, after a certain threshold, the gain reduces strongly so that it does not anymore justify the higher energy cost. Discharged at 3 C-rate, an inlet flow rate of 0.1m/s was sufficient to efficiently cool down the system; discharged at 5 C-rate, the optimum inlet flow rate was 0.25m/s. Simulations could accurately reproduce experimental results, allowing for an efficient design of the liquid-cooled BTMS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据