4.6 Article

Many-body localization transition in Hilbert space

期刊

PHYSICAL REVIEW B
卷 102, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.102.014208

关键词

-

向作者/读者索取更多资源

In this paper we propose a new perspective to analyze the many-body localization (MBL) transition when recast in terms of a single-particle tight-binding model in the space of many-body configurations. We compute the distribution of tunneling rates between many-body states separated by an extensive number of spin flips at the leading order in perturbation theory starting from the insulator and determine the scaling of their typical amplitude with the number of accessible states in the Hilbert space. By using an analogy with the Rosenzweig-Porter random matrix ensemble, we propose an ergodicity breaking criterion for the MBL transition based on the Fermi golden rule. According to this criterion, in the MBL phase many resonances are formed at large distance from an infinite temperature initial state, but they are not enough for the quantum dynamics to decorrelate from it in a finite time. This implies that, differently from Anderson localized states, in the insulating phase many-body eigenstates are multifractal in the Hilbert space, as they occupy a large but subexponential part of the total volume, in agreement with recent numerical results, perturbative calculations, and intuitive arguments. Possible limitations and implications of our interpretation are discussed in the conclusions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据