4.6 Article

The effect of an urban park on the microclimate in its vicinity: a case study for Antwerp, Belgium

期刊

INTERNATIONAL JOURNAL OF CLIMATOLOGY
卷 38, 期 -, 页码 E303-E322

出版社

WILEY
DOI: 10.1002/joc.5371

关键词

urban microclimate; computational fluid dynamics; vegetation; scenario analysis; adaptation measures; park cooling effect; urban design

向作者/读者索取更多资源

An urban park can exhibit a cooling effect not only in the park itself, but also in its wake with respect to the prevailing wind. This study investigates the cooling potential of an urban park in Antwerp, Belgium focusing on two parameters: (1) intensity of the cooling effect, indicating the maximum reduction in air temperature and (2) range of the cooling effect, indicating the maximum horizontal distance where a minimum of 0.1 degrees C cooling effect is present. Computational fluid dynamics (CFD) simulations are performed using the three-dimensional unsteady Reynolds-averaged Navier-Stokes equations. Coupled simulations of wind flow and heat transfer consider all the conductive, convective and radiative heat transfer processes but not the long-wave radiation heat exchange between buildings, trees and ground. The vegetation model used in this study is evaluated with experimental data from an earlier study. Moreover, the simulated air temperatures inside the Antwerp city center are compared with available measurement data. Following the fairly-good predictions from CFD simulations, results from the following cases are compared: (1) base case with the park, (2) a case with an open square instead of the park, and (3) a case with representative buildings instead of the park. The results indicate a maximum daytime intensity and range of the cooling effect of 3.4 degrees C and 498m at 1500LST (UTC + 2, Central European Summer Time). Further analysis shows that the cooling effect is more profound closer to the ground. Apart from the daytime cooling effect, the park investigated has the potential to lower wind velocities, resulting in increased air temperatures during the night-time (at 0000LST) by 0.9 degrees C, although this number might be slightly different given the neglect of long-wave radiation heat exchange between buildings, trees and ground.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据