4.2 Article

Chemical Reaction Effects on Nano Carreau Liquid Flow Past a Cone and a Wedge with Cattaneo-Christov Heat Flux Model

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/ijcre-2017-0108

关键词

chemical reaction; Carreau fluid; Cattaneo-Christov heat flux model; Brownian motion; convective condition; nanofluid

向作者/读者索取更多资源

Chemical reaction aspect is utilized for heat mass transfer analysis of nano non-Newtonian liquid flow past a cone and a wedge. Flow is steady, laminar and two dimensional created due to a cone and a wedge. The Carreau liquid and Cattaneo-Christov heat flux models are utilized. The magneto-nano Carreau liquid material occupies the porous space. The relevant PDEs are rendered into coupled non-linear ODEs via appropriate transformations before treated them numerically through Runge-Kutta and Newton's method. The computed results are plotted for employing the various values of physical constraints on the profiles of velocity, temperature and nanoparticle volume fraction. Moreover, vitiation of the friction factor, Nusselt number and Sherwood number against physical parameters are presented numerically. It is figured out that convective heating and Brownian motion effects are constructive for thermal boundary layer growth. Aspect of chemical reaction is significant to control the solute layer growth and mass transfer rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据