4.6 Article

A novel redox bromide-ion additive hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with boosted energy density and controllable zinc deposition

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 8, 期 30, 页码 15042-15050

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta03547e

关键词

-

资金

  1. National Natural Science Foundation of China [21875068]

向作者/读者索取更多资源

With the rapid development of flexible wearable electronic devices and the growing energy demands of modern society, flexible energy storage equipment is attracting increasing attention. Recently, flexible Zn-ion hybrid supercapacitors (ZHSs), as a new type of flexible energy storage device, have been reported. However, the limited energy density of the currently reported flexible ZHSs should be further improved to realize their large-scale applications. Herein, we designed a novel redox bromide-ion additive hydrogel electrolyte (SA-Zn-Br) for flexible Zn-ion hybrid supercapacitors (BH-ZHSs)viathe introduction of extra faradaic contributions (3Br(-)/Br-3(-)) into the hydrogel electrolyte to improve their energy density. Additionally, the assembled flexible BH-ZHS displays a maximum energy density of 605 W h kg(-1)at a power density of 1848 W kg(-1)at an amazing voltage of 2.6 V, which is better than that of most reported flexible ZHSs. After a 5000 cycle charge/discharge cycling test, capacity retention of 87.7% is retained. Interestingly, the strong interactions between the charged groups and Zn(2+)ion in the SA-Zn-Br hydrogel electrolyte can harmonize Zn(2+)migration with uniform nucleation on a Zn foil surface, leading to layered zinc deposition. Additionally, the SA-Zn-Br hydrogel electrolyte can also serve as an inhibitor of water/oxygen, resulting in the mitigation of corrosion and highly reversible zinc stripping/depositing. The strategy described in this study should provide a new insight for exploring flexible ZHSs with boosted energy density and controllable zinc deposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据