4.7 Article

New exact multi-coated ellipsoidal inclusion model for anisotropic thermal conductivity of composite materials

期刊

APPLIED MATHEMATICAL MODELLING
卷 87, 期 -, 页码 584-605

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2020.06.005

关键词

Composite materials; Anisotropic thermal conductivity; Multi-coated ellipsoidal inclusion; Generalized Self-Consistent scheme; Generalized Mod Tanaka model

向作者/读者索取更多资源

The present study deals with a new micromechanical modeling of the thermal conductivity of multi-coated inclusion-reinforced composites. The proposed approach has been developed in the general frame of anisotropic thermal behavior per phase and arbitrary ellipsoidal inclusions. Based on the Green's function technique, a new formulation of the problem of multi-coated inclusion is proposed. This formulation consists in constructing a system of integral equations, each associated to the thermal conductivity of each coating and the reference medium. Thanks to the concept of interior- and exterior-point Eshelby's conduction tensors, the exact solution of the problem of multicoated inclusion is obtained. Analytical expressions of the intensity in each phase and the effective thermal conductivity of the composite, through homogenizations schemes such as Generalized self-consistent and Mob-Tanaka models are provided. Results of the present model are successfully compared with those issued from both analytical models and finite elements methods for composites with doubly coated inclusions. Moreover, the developed micromechanical model has been applied to a three phase composite materials in order to analyze combined effects of the aspect ratio and the volume fraction of the ellipsoidal inclusions, the anisotropy of the thermal conductivity of interphase, the thermal conductivity contrast between local phases on the predicted effective thermal conductivity. (C) 2020 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据