4.4 Article

Blockage of Autophagy in C6 Glioma Cells Enhanced Radiosensitivity Possibly by Attenuating DNA-PK-Dependent DSB Due to Limited Ku Nuclear Translocation and DNA Binding

期刊

CURRENT MOLECULAR MEDICINE
卷 15, 期 7, 页码 663-673

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1566524015666150831141112

关键词

Autophagy; beclin-1; DNA-PK; DSB repair; glioblastoma; radiation

资金

  1. National Natural Science Foundation of China [81372712, 30900383]
  2. Ministry of Education of China [20090142120051]

向作者/读者索取更多资源

Glioblastoma multiforme (GBM) is the most lethal brain tumor and notorious for its resistance to ionizing radiation (IR). Recent evidence suggests that one possible mechanism that enables resistance to IR and protects cells against therapeutic stress is cellular autophagy. The molecular basis for this pro-survival function, however, remains elusive. Herein, we report a molecular mechanism by which IR-induced autophagy accelerates the repair of DNA double-strand breaks (DSB). We demonstrate that IR induces the accumulation of autophagosomes, which is accompanied by elevated expression of autophagy-related genes beclin-1, atg5, atg7, and atg12. Beclin-1 knockdown impaired the induction of IR-mediated autophagy and significantly sensitized glioma cells to radiation therapy in vitro and in vivo. Furthermore, our data is the first to demonstrate that the radiosensitizing effect of beclin-1 knockdown may result from the disruption of nuclear translocation and DNA binding activity of Ku proteins and consequent attenuation of DSB repair. Our findings help advance our understanding of the molecular mechanisms underlying IR-induced autophagy and provide a promising adjunctive therapeutic strategy for the radiosensitization of malignant glioma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据