4.7 Article

Parametric study on effects of methanol injection timing and methanol substitution percentage on combustion and emissions of methanol/diesel dual-fuel direct injection engine at full load

期刊

FUEL
卷 279, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.118424

关键词

Dual-fuel direct injection; Methanol/diesel; Methanol substitution percentage; Methanol injection timing; Combustion and emissions

向作者/读者索取更多资源

The effects of methanol injection timing (MIT) and methanol substitution percentage (MSP) on the combustion and emissions of a methanol/diesel dual-fuel direct injection engine were investigated, followed by a comparative analysis with the conventional methanol/diesel dual-fuel mode. A single-cylinder, air-cooled, naturally aspirated common rail diesel engine was modified into a dual-fuel direct injection engine with a methanol direct injection system. The engine was operated at a maximum torque speed of 2500 rpm and a mean effective pressure of 0.75 MPa. The engine performance was analyzed for different methanol/diesel fuel mixtures using four MSPs: 10%, 20%, 30%, and 40%. Meanwhile, the MIT was adjusted from -60 to -300 degrees CA after top dead center (ATDC). The results indicated that methanol addition and retarded MIT allowed the diesel injection timing to be properly advanced. A higher MSP increased the ignition delay (CAO-10) and decreased the combustion duration (CA10-90), leading to increases in the brake thermal efficiency (BTE), coefficient of variation of the indicated mean effective pressure (IMEP) (COVIMEP), and knock intensity (KI), along with increases in the total hydrocarbon (THC) and nitrogen oxide (NOx) emissions and decreases in the carbon monoxide (CO) and soot emissions. Additionally, for a specific MSP, the retarded MIT increased the peak cylinder pressure and decreased the maximum heat release rate. Concurrently, it decreased the CAO-10 and increased the CA10-90. Moreover, increases in the BTE, COVIMEP, and KI; decreases in the THC and CO emissions; and increases in the NOx and soot emissions were achieved using the retarded MIT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据