4.7 Article

ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet fuels

期刊

FUEL
卷 279, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.118548

关键词

Molecular dynamics; ReaxFF reactive force field; Pyrolysis; Bio-derived jet fuel

资金

  1. U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Bioenergy Technologies Office (BETO)
  2. U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under Vehicle Technologies Office (VTO) [DE-EE0007983]
  3. AFOSR [FA9550-17-1-0173]

向作者/读者索取更多资源

This work investigates the initial stages of the pyrolysis of HtH-1 (C18H32; 2,2,7,7,8a,8b-hexamethyl-dodecahydrobiphenylene) and HtH-2 (C18H34; 1,1 ',3,3,3 ',3 '-hexamethyl-1,1 '-bi(cyclohexane)), which are bio-derived polycyclic alkanes and potential jet fuels, using ReaxFF force field based molecular dynamics (MD) simulations. Global Arrhenius parameters, such as activation energies and pre-exponential factors, are calculated and used to analyze the overall decomposition kinetics of the fuels. HtH-1 decomposes faster than HtH-2 at the same temperature and density conditions, and they have a faster decomposition rate compared to some existing jet-fuels, such as JP-10. A systematic reaction analysis framework developed in this work is applied to determine a temperature-dependent decomposition mechanism. At lower temperature, the central C-C bond connecting the two cyclohexane rings is dominantly broken in both HtH-1 and HtH-2. However, C-CH3 bond breaking becomes dominant with increasing temperature due to the large increase in entropy during this reaction. Major products from HtH-1 are C5H8 and C4H8, and those from HtH-2 are C4H8 and C2H4. The major products predict that HtH-1 has a higher sooting tendency than HtH-2, which is consistent with measurements. The impact of HtH-2 on the pyrolysis of HtH-1 is also investigated in their binary mixtures. HtH-1 and HtH-2 decompose by unimolecular reactions, and they rarely interact with each other during the pyrolysis of the mixtures. This work demonstrates that ReaxFF can be used to investigate pyrolysis and combustion chemistry of existing or future fuels and to contribute to the development of their chemical kinetic models without any a priori input and chemical intuition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据