4.6 Article

Microglial Activation as a Compelling Target for Treating Acute Traumatic Brain Injury

期刊

CURRENT MEDICINAL CHEMISTRY
卷 22, 期 6, 页码 759-770

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/0929867321666141106124657

关键词

Brain; cytokines; free radicals; microglia; traumatic injury

资金

  1. Ministry of Science and Technology, Taiwan, R.O.C [NSC 102-2628-B-384001-MY3, NSC 102-2314-B-384-003-MY2]
  2. Mr. Wen-Lung Hsu Foundation of Chi Mei Medical Center (Tainan, Taiwan)

向作者/读者索取更多资源

Microglia and several inflammatory cytokines and neurotrophic growth factors are involved in traumatic brain injury (TBI). Tumor necrosis factor-alpha (TNF-alpha) can be released by microglia, astrocytes, and neurons. TNF-alpha has been reported to be both proneurogenic and antineurogenic, depending upon the model, method, and cell-derived region. There are two subtypes of microglia: M1 and M2. The former (or M1 subtype of non-phagocytic microglia) is able to secrete higher levels of TNF-alpha but lower levels of interleukin (IL)-10 (IL-10), an anti-inflammatory cytokine. Both the proinflammatory and the pro-apoptotic function can also be promoted by activation of tumor necrosis factor-receptor 1 (TNF-R1). In contrast, M2 activation produces lower levels of TNF-alpha but higher levels of IL-10. Pro-growth and survival pathways can be promoted by the activation of TNF-R2. During the acute stage of TBI, both M1 subtype of microglia and TNF-R1 are activated to cause higher levels of TNF-alpha but lower levels of IL-10, which lead to suppressed neurogenesis, neuronal loss and organ dysfunction (so-called microglial activation I). In contrast, activation of both M2 subtype of microglia and TNF-R2 is able to promote neurogenesis and tissue recovery (so-called microglial activation II). The severity of TBI depends upon the net effects between microglial activation I and microglial activation II. Indeed, by using rodent models of TBI, therapeutic evaluation studies reveal that several agents or strategies attenuate contused brain volume and neurological deficits by inhibiting microglial activation I but inducing microglial activation II. For example, etanercept therapy might attenuate contused brain volume and neurological deficits by inactivating the M1 subtype and TNF-R1 to reduce the microglial activation I response, but it might promote neurogenesis and functional recovery by activating the M2 subtype and TNF-R2. Therefore, based on microglial responses I and II, we conclude that future studies should focus on multiple therapeutic agents and strategies for optimal TBI therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据