4.6 Article

Boosting activity and selectivity of glycerol oxidation over platinum-palladium-silver electrocatalysts via surface engineering

期刊

NANOSCALE ADVANCES
卷 2, 期 8, 页码 3423-3430

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0na00252f

关键词

-

资金

  1. National Natural Science Foundation of China [21706081]
  2. 111 Project [B17018]
  3. Open Project Program of Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods

向作者/读者索取更多资源

A series of platinum-palladium-silver nanoparticles with tunable structures were synthesized for glycerol electro-oxidation in both alkaline and acidic solutions. Electrochemical results indicate that the catalysts show superior activity in alkaline solutions relative to acidic solutions. In alkaline solutions, the peak current densities of ammonia-etched samples are approximately twice those of saturated-NaCl-etched samples. Ammonia-etched platinum-palladium-silver (PtPd@Ag-NH3) exhibits a peak current density of 9.16 mA cm(-2), which is 18.7 and 10 times those of the Pt/C and Pd/C, respectively. The product distribution was analyzed by high performance liquid chromatography. Seven products including oxalic acid, tartronic acid, glyoxylic acid, glyceric acid (GLA), glyceraldehyde (GALD), glycolic acid, and dihydroxyacetone (DHA) were detected. The NH3 center dot H2O etched samples tend to generate more GALD, while the NaCl etched samples have a great potential to produce DHA. The addition of Pd atoms can facilitate glycerol oxidation pathway towards the direction of GALD generation. The Pt@Ag-NaCl possesses the largest DHA selectivity of 79.09% at 1.3 V, while the Pt@Ag-NH3 exhibits the largest GLA selectivity of 45.01% at 0.5 V. The PtPd@Ag-NH3 exhibits the largest C3/C2 ratio of 17.45. The selectivity and product distribution of glycerol electro-oxidation can be tuned by engineering the surface atoms of the as-synthesized catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据