4.6 Article

Colloidal transport in bacteria suspensions: from bacteria collision to anomalous and enhanced diffusion

期刊

SOFT MATTER
卷 16, 期 32, 页码 7503-7512

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0sm00309c

关键词

-

资金

  1. ANR

向作者/读者索取更多资源

Swimming microorganisms interact and alter the dynamics of Brownian particles and tend to modify their transport properties. In particular, dilute colloids coupled to a bath of swimming cells generically display enhanced diffusion on long time scales. This transport dynamics stems from a subtle interplay between the active and passive particles that still resists our understanding despite decades of intense research. Here, we tackle the root of the problem by providing a quantitative characterisation of the single scattering events between a colloid and a bacterium, a smooth runningE. coli. Based on our experiments, we build a minimal model that quantitatively predicts the geometry of the scattering trajectories, and enhanced colloidal diffusion at long times. This quantitative confrontation between theory and experiments elucidates the microscopic origin of enhanced transport. Collisions are solely ruled by stochastic contact interactions and the ratio of the drag coefficients of the colloid and the bacteria. Such description accounts both for genuine anomalous diffusion at short times and enhanced diffusion at long times with no ballistic regime at any scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据