4.7 Article

Liquid hot water extraction as a chemical-free pretreatment approach for biobutanol production from Cassia fistula pods

期刊

FUEL
卷 279, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.118393

关键词

Cassia fistula pods; Liquid hot water extraction; Fermentation; Biobutanol production

向作者/读者索取更多资源

The present investigation was carried with accessible roadside ornamental tree waste, Cassia fistula pods (CFP) for biobutanol production using Clostridium acetobutylicum TISTR 2375 through various methodologies compositional analysis, extraction, saccharification, and fermentation. The results of the liquid hot water extraction (LHW) in CFP revealed that the optimal condition at temperature 63 degrees C for 40 min and 96 degrees C for 60 min. The sugar concentration at the optimal condition has 258.82 g/L total sugar and 57.22 g/L, reducing sugar, respectively. CFP materials that have been LHW extracted and processed hydrolysis with cellulase enzymes. It was found that the total sugar concentration was increased from 272.34 +/- 5.65 g/L to 344.48 +/- 19.74 g/L; also the reducing sugar concentration was increased from 55.24 +/- 4.36 g/L to 144.29 +/- 30.74 g/L. At the early stage, high sugar concentrations cause inhibition of the development of the cells, which limits the fermentation. This study finding suggested that sugar dilution is an essential step for efficient butanol production by a strain of C. acetobutylicum TISTR 2375. The present investigation was carried with accessible roadside ornamental tree waste, Cassia fistula pods (CFP) for biobutanol production using Clostridium acetobutylicum TISTR 2375 through various methodologies compositional analysis, extraction, saccharification, and fermentation. The results of the liquid hot water extraction (LHW) in CFP revealed that the optimal condition at temperature 63 degrees C for 40 min and 96 degrees C for 60 min. The sugar concentration at the optimal condition has 258.82 g/L total sugar and 57.22 g/L, reducing sugar, respectively. CFP materials that have been LHW extracted and processed hydrolysis with cellulase enzymes. It was found that the total sugar concentration was increased from 272.34 +/- 5.65 g/L to 344.48 +/- 19.74 g/L; also the reducing sugar concentration was increased from 55.24 +/- 4.36 g/L to 144.29 +/- 30.74 g/L. At the early stage, high sugar concentrations cause inhibition of the development of the cells, which limits the fermentation. This study finding suggested that sugar dilution is an essential step for efficient butanol production by a strain of C. acetobutylicum TISTR 2375.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据