3.9 Article

Effect of miniaturization and surface roughness on the mechanical properties of the electron beam melted superalloy Inconel®718

期刊

PROGRESS IN ADDITIVE MANUFACTURING
卷 5, 期 3, 页码 267-276

出版社

SPRINGERNATURE
DOI: 10.1007/s40964-019-00101-w

关键词

Additive manufacturing; Electron beam melting; Ni-based superalloy; Fatigue behavior; Fatigue life estimation

资金

  1. German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) [NI~1327/13-1, WA~1672/32-1]

向作者/读者索取更多资源

In this work, the Ni-based super alloy Inconel 718 manufactured via electron beam melting is investigated. Typical microstructure of Inconel 718, which was processed by electron beam melting, consists of columnar oriented dendritic structure with strong texture along building direction in hatch region, whereas microstructure differs in contour region, which is supposed to influence mechanical properties in the as-built state. As highly complex geometries are possible to manufacture with additive manufacturing techniques, the influence of miniaturization and surface roughness on microstructural and mechanical properties has to be understood in detail. Therefore, samples were processed with different initial sizes and subsequently tested in as-built and polished condition. Before performing mechanical tests, process-induced microstructure was determined by scanning electron microscope as well as distribution of defects and geometrical deviations by microfocused computed tomography. To characterize the mechanical properties, different testing methods, both tensile and fatigue tests, were carried out. Present investigations show almost similar microstructures in large-scale and small-scale Inconel 718 volumes. However, small-scale volumes show higher number of defects in the form of surface and near-surface defects. Furthermore, as-built specimens show geometrical deviations when compared to initial CAD diameter, which makes the implementation of an average equivalent diameter mandatory. It can be demonstrated that small-scale as-built volumes have reduced mechanical properties, whereby ultimate tensile strength is reduced by 60% and fatigue strength is reduced by 75%, showing that increased defect density and as-built surface roughness have a higher impact on fatigue properties and are the dominating reason for early failure in the as-built state due to multiple crack initiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据