4.6 Article

An investigation of residual stresses in micro-end-milling considering sequential cuts effect

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-017-0088-5

关键词

Micro-end-milling; Residual stresses; Sequential cuts; Initial cutter position; Tool flank wear

资金

  1. National Natural Science Foundation of China [51475188]
  2. National Science Foundation for Distinguished Young Scholars of China [51625502]

向作者/读者索取更多资源

The distribution of machining-induced residual stresses has significant effects on the fatigue life, corrosion resistance, and precision durability of parts. An analytical model is presented to reveal the evolution regularity of residual stresses in workpiece for micro-end-milling. Considering the characteristics of tool rotation and interrupted cutting, the process of cutting entry and exit of each flute is treated as one cut, and sequential cuts effect is taken into account in the proposed model. The stress state caused by the previous cut is taken as the initial condition for the current cut. In order to improve the prediction efficiency, a new methodology which supposes the tool makes reverse movement is developed to determine the initial cutter position for residual stress calculation. The theoretical model is validated by machining NAK80 steel under different flank wear widths on a 3-axis ultra-precision micro-milling machine. Residual stresses are tested by means of X-ray diffraction. The computed results show that residual stresses are compressive and present a hook-shaped distribution, which is consistent with experimental results. Moreover, the effects of feed rate and radial depth of cut on residual stresses are theoretically investigated. This work can be further applied to optimize cutting conditions to achieve better surface integrity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据