4.6 Article

A numerical convergence study regarding homogenization assumptions in phase field modeling

期刊

出版社

WILEY
DOI: 10.1002/nme.5547

关键词

phase field theory; numerical convergence; variational principles; homogenization; rank-one convexification

向作者/读者索取更多资源

From a mathematical point of view, phase field theory can be understood as a smooth approximation of an underlying sharp interface problem. However, the smooth phase field approximation is not uniquely defined. Different phase field approximations are known to converge to the same sharp interface problem in the limiting caseif the thickness of the diffuse interface converges to zero. In this respect and focusing on numerics, a question that naturally arises is as follows: What are the convergence rates of the different phase field models? The paper deals precisely with this question for a certain family of phase field models. The focus is on an Allen-Cahn-type phase field model coupled to continuum mechanics. This model is rewritten into a unified variational phase field framework that covers different homogenization assumptions in the diffuse interfaces: Voigt/Taylor, Reuss/Sachs and more sound homogenization approaches falling into the range of rank-one convexification. It is shown by means of numerical experiments that the underlying phase field modelthat is, the homogenization assumption in the diffuse interfaceindeed influences the convergence rate. Copyright (c) 2017 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据