4.6 Article

A quasi-static discontinuous Galerkin configurational force crack propagation method for brittle materials

期刊

出版社

WILEY
DOI: 10.1002/nme.5699

关键词

configurational force; crack propagation; discontinuous Galerkin; rp-adaptivity

资金

  1. Engineering and Physical Sciences Research Council [EP/M507854/1]
  2. Engineering and Physical Sciences Research Council [1641830] Funding Source: researchfish

向作者/读者索取更多资源

This paper presents a framework for r-adaptive quasi-static configurational force (CF) brittle crack propagation, cast within a discontinuous Galerkin (DG) symmetric interior penalty (SIPG) finite element scheme. Cracks are propagated in discrete steps, with a staggered algorithm, along element interfaces, which align themselves with the predicted crack propagation direction. The key novelty of the work is the exploitation of the DG face stiffness terms existing along element interfaces to propagate a crack in a mesh-independent r-adaptive quasi-static fashion, driven by the CF at the crack tip. This adds no new degrees of freedom to the data structure. Additionally, as DG methods have element-specific degrees of freedom, a geometry-driven p-adaptive algorithm is also easily included allowing for more accurate solutions of the CF on a moving crack front. Further, for nondeterminant systems, we introduce an average boundary condition that restrains rigid body motion leading to a determinant system. To the authors' knowledge, this is the first time that such a boundary condition has been described. The proposed formulation is validated against single and multiple crack problems with single- and mixed-mode cracks, demonstrating the predictive capabilities of the method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据