4.6 Article

Ferromagnetic hybrid nodal loop and switchable type-I and type-II Weyl fermions in two dimensions

期刊

PHYSICAL REVIEW B
卷 102, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.102.075133

关键词

-

资金

  1. National Natural Science Foundation of China [11904074]
  2. Nature Science Foundation of Hebei Province [E2019202222, E2019202107]
  3. Beijing Institute of Technology Research Fund Program for Young Scholars
  4. Young Elite Scientists Sponsorship Program by Tianjin

向作者/读者索取更多资源

As a novel type of fermionic state, the hybrid nodal loop with the coexistence of both type-I and type-II band crossings has attracted intense research interest. However, it remains a challenge to realize the hybrid nodal loop in both two-dimensional (2D) materials and in ferromagnetic (FM) materials. Here, we propose a FM hybrid nodal loop in a 2D CrN monolayer. We show that the material has a high Curie temperature (>600 K) FM ground state, with the out-of-plane [001] magnetization. It shows a half-metallic band structure with two bands in the spin-up channel crossing each other near the Fermi level. These bands produce both type-I and type-II band crossings, which form a fully spin-polarized hybrid nodal loop. We find the nodal loop is protected by the mirror symmetry and robust against spin-orbit coupling. An effective Hamiltonian characterizing the hybrid nodal loop is established. We further find the configuration of the nodal loop can be shifted under external perturbations such as strain. Most remarkably, we demonstrate that both type-I and type-II Weyl nodes can be realized from such FM hybrid nodal loop by simply shifting the magnetization from out of plane to in plane. Our work provides an excellent candidate to realize a FM hybrid nodal loop and Weyl fermions in 2D material, and is also promising for related topological applications with their intriguing properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据