4.4 Article

A novel approach for early evaluation of orthodontic process by a numerical thermomechanical analysis

出版社

WILEY
DOI: 10.1002/cnm.2899

关键词

finite element method; mechanical stress; orthodontic loading; thermal analysis; viscohyperelastic behavior

向作者/读者索取更多资源

The main objective of this paper is to propose a novel method that provides an opportunity to evaluate an orthodontic process at early phase of the treatment. This was accomplished by finding out a correlation between the applied orthodontic force and thermal variations in the tooth structure. To this end, geometry of the human tooth surrounded by the connective soft tissue called the periodontal ligament and the bone was constructed by employing dental CT scan images of a specific case. The periodontal ligament was modeled by finite strain viscoelastic model through a nonlinear stress-strain relation (hyperelasticity) and nonlinear stress-time relation (viscoelasticity). The tooth structure was loaded by a lateral force with 15 different quantities applied to 20 different locations, along the midedge of the tooth crown. The resultant compressive stress in the periodontal ligament was considered as the cause of elevated cell activity that was modeled by a transient heat flux in the thermal analysis. The heat flux value was estimated by conducting an experiment on a pair of rats. The numerical results showed that by applying an orthodontic force to the tooth structure, a significant temperature rise was observed. By measuring the temperature rise, the orthodontic process can be evaluated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据