4.6 Article

Cyberattacks on Miniature Brain Implants to Disrupt Spontaneous Neural Signaling

期刊

IEEE ACCESS
卷 8, 期 -, 页码 152204-152222

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.3017394

关键词

Computer crime; Implants; Neurons; Privacy; Bluetooth; Measurement; Brain computer interfaces; security; artificial neural networks; biological neural networks

资金

  1. Irish Research Council, under the Government of Ireland Postdoctoral Fellowship [GOIPD/2018/466]

向作者/读者索取更多资源

Brain-Computer Interfaces (BCI) arose as systems that merge computing systems with the human brain to facilitate recording, stimulation, and inhibition of neural activity. Over the years, the development of BCI technologies has shifted towards miniaturization of devices that can be seamlessly embedded into the brain and can target single neuron or small population sensing and control. We present a motivating example highlighting vulnerabilities of two promising micron-scale BCI technologies, demonstrating the lack of security and privacy principles in existing solutions. This situation opens the door to a novel family of cyberattacks, called neuronal cyberattacks, affecting neuronal signaling. This article defines the first two neural cyberattacks, Neuronal Flooding (FLO) and Neuronal Scanning (SCA), where each threat can affect the natural activity of neurons. This work implements these attacks in a neuronal simulator to determine their impact over the spontaneous neuronal behavior, defining three metrics: number of spikes, percentage of shifts, and dispersion of spikes. Several experiments demonstrate that both cyberattacks produce a reduction of spikes compared to spontaneous behavior, generating a rise in temporal shifts and a dispersion increase. Mainly, SCA presents a higher impact than FLO in the metrics focused on the number of spikes and dispersion, where FLO is slightly more damaging, considering the percentage of shifts. Nevertheless, the intrinsic behavior of each attack generates a differentiation on how they alter neuronal signaling. FLO is adequate to generate an immediate impact on the neuronal activity, whereas SCA presents higher effectiveness for damages to the neural signaling in the long-term.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据