4.2 Review

Create, activate, destroy, repeat: Cdk1 controls proliferation by limiting transcription factor activity

期刊

CURRENT GENETICS
卷 62, 期 2, 页码 271-276

出版社

SPRINGER
DOI: 10.1007/s00294-015-0535-5

关键词

Cell cycle; Gene expression; Cyclin-dependent kinase; Hcm1; Calcineurin

资金

  1. Richard and Susan Smith Family Foundation

向作者/读者索取更多资源

Progression through the cell cycle is controlled by a network of transcription factors that coordinate gene expression with cell-cycle events. One transcriptional activator in this network in budding yeast is the forkhead protein Hcm1, which controls the expression of genes that are transcribed during S-phase. Hcm1 activity is coordinated with the cell cycle via its regulation by cyclin-dependent kinase (Cdk1), which both activates Hcm1 and targets it for degradation, through phosphorylation of distinct sites. The mechanisms controlling the differential phosphorylation timing of the activating and destabilizing phosphosites are not clear. However, a recent study shows that the phosphatase calcineurin specifically removes activating phosphates from Hcm1 when cells are exposed to environmental stress, thus extinguishing its activity and slowing proliferation under unfavorable growth conditions. This regulatory mechanism, whereby a phosphatase actively alters the distribution of phosphosites on a cell cycle-regulatory transcription factor to elicit a change in cellular proliferation, adds an additional layer of complexity to the regulatory network controlling the cell cycle. Furthermore, this regulatory paradigm is likely to be a conserved mode of phosphoregulation that controls the cell cycle in diverse systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据