4.8 Article

Quantum confinement in group III-V semiconductor 2D nanostructures

期刊

NANOSCALE
卷 12, 期 33, 页码 17494-17501

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nr03577g

关键词

-

资金

  1. Italian Ministry of University and Research (MIUR) through PRIN Project [20179337R7 MULTI-e]
  2. Dipartimenti di Eccellenza - 2017 Materials For Energy

向作者/读者索取更多资源

In this work we investigate the role of quantum confinement in group III-V semiconductor thin films (2D nanostructures). To this end we have studied the electronic structure of nine materials (AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb) by means of Density Functional Theory (DFT) calculations using a screened hybrid functional (HSE06). We focus on the structural and electronic properties of bulk and the (110) surfaces, for which we evaluate and rationalize the impact of system size to the band gap and band edge positions. Our results indicate that when the quantum confinement is strong, it mainly affects the position of the Conduction Band Minimum (CBM) of the semiconductor, while the Valence Band Maximum (VBM) is almost insensitive to the system size. The results can be rationalized in terms of electron and hole effective masses. Our conclusions, based on slabs, can be generalized to other cases of quantum confinement such as quantum dots, overcoming the need for an explicit consideration and calculation of the properties of semiconductor nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据