4.7 Article

Antimicrobial and antifouling coating constructed using rosin acid-based quaternary ammonium salt and N-vinylpyrrolidone via RAFT polymerization

期刊

APPLIED SURFACE SCIENCE
卷 530, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2020.147193

关键词

N-vinylpyrrolidone; Maleopimaric acid quaternary ammonium cation; Antimicrobial; Antifouling; Biocompatibility; Coating

资金

  1. Foundation of Jiangsu Province Biomass Energy and Material Laboratory [JSBEM-S-201905]
  2. National Natural Science Foundation of China [31570562]
  3. Discipline Group Construction Project of CAF-ICIFP [LHSXKQ1]

向作者/读者索取更多资源

Biofilm formation of pathogenic bacteria on the surfaces of implantable biomedical devices limit their applications and effective usage. Current antimicrobial coatings for implantable biomedical devices have significant deficiencies including a lack of long-term activity and biocompatibility. Herein, a dual-functional coating (antifouling and antimicrobial) was constructed using a combination of N-vinylpyrrolidone (NVP) and maleopimaric acid quaternary ammonium cation containing a double bond functionality (GMA-MPA-N+) via surface-initiated reversible addition-fragmentation chain-transfer polymerization. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy were used to confirm the successful construction of coating. GMA-MPA-N+ endowed the dual-functional coating with excellent broad-spectrum antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. The biofilm formation on this coating was inhibited for up to 21 days, and protein adsorption and platelet adhesion decreased significantly compared to those on the pristine substrate surfaces. The cytotoxicity assays demonstrated that the coating displayed excellent biocompatibility with the mammalian cells. Notably, the subcutaneous implantation of samples in the rat assay showed the excellent anti infective property of the coating in vivo. Thus, the dual-functional antimicrobial coating exhibited long-term anti-biofilm properties as well as excellent biocompatibility, thereby providing insights into the design of implantable biomedical devices with antimicrobial properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据