4.6 Article

Osiris9a is a major component of silk fiber in lepidopteran insects

期刊

INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY
卷 89, 期 -, 页码 107-115

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ibmb.2017.09.002

关键词

Osiris; Silk protein; Gene expression; Multifunctional protein; Evolution; Silkworm

资金

  1. National Natural Science Foundation of China [31530071, 31372380]
  2. Chongqing Research Program of Basic Research and Frontier Technology [cstc2014jcyjA80007]
  3. Fundamental Research Funds for the Central Universities of China [XDJK2017C075]

向作者/读者索取更多资源

In a previous high-throughput proteomics study, it was found that the silkworm cocoon contains hundreds of complex proteins, many of which have unknown functions, in addition to fibroins, sericins, and some protease inhibitors. Osiris was one of the proteins with no known function. In this study, we identified the Osiris gene family members and constructed a phylogenetic tree based on the sequences from different species. Our results indicate that the Osiris9 gene subfamily contains six members; it is specifically expressed in lepidopteran insects and has evolved by gene duplication. An Osiris gene family member from Bombyx mori was designated as BmOsiris9a (BmOsi9a) on the basis of its homology to Drosophila melanogaster Osiris9. The expression pattern of BmOsi9a showed that it was highly expressed only in the middle silk gland of silkworm larvae, similar to Sericin1 (Ser1). BmOsi9a was visualized as two bands in western blot analysis, implying that it probably undergoes post-translational modifications. Immunohistochemistry analysis revealed that BmOsi9a was synthesized and secreted into the lumen of the middle silk gland, and was localized in the sericin layer in the silk fiber. BmOsi9a was found in the silk fibers of not only three Bombycidae species, viz. B. mori, B. mandarins, and B. huttoni, but also in the fibers collected from Saturniidae species, including Antheraea assama, Antheraea mylitta, and Samia cynthia. Although the exact biological function of Osi9a in the silk fibers is unknown, our results are important because they demonstrate that Osi9a is a common structural component of silk fiber and is expressed widely among the silk-producing Bombycidae and Saturniidae insects. Our results should help in understanding the role of Osi9a in silk fibers. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据