4.7 Article

The Role of Connectivity on Electronic Properties of Lead Iodide Perovskite-Derived Compounds

期刊

INORGANIC CHEMISTRY
卷 56, 期 14, 页码 8408-8414

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.7b01096

关键词

-

资金

  1. The Netherlands Organisation for Science NWO [022.005.006]

向作者/读者索取更多资源

We use a layered solution crystal growth method to synthesize high-quality single crystals of two different benzylammonium lead iodide perovskite-like organic/inorganic hybrids. The well-known (C6H5CH2NH3)(2)PbI4 phase is obtained in the form of bright orange platelets, with a structure comprised of single < 100 >-terminated sheets of corner-sharing PbI6 octahedra separated by bilayers of the organic cations. The presence of water during synthesis leads to formation of a novel minority phase that crystallizes in the form of nearly transparent, light yellow bar-shaped crystals. This phase adopts the monoclinic space group P2(1)/n and incorporates water molecules, with structural formula (C6H5CH2NH3)(4)Pb5I14 center dot 2H2O. The crystal structure consists of ribbons of edge-sharing PbI6 octahedra separated by the organic cations. Density functional theory calculations including spin orbit coupling show that these edge-sharing PbI6 octahedra cause the band gap to increase with respect to corner-sharing PbI6 octahedra in (C6H5CH2NH3)(2)PbI4. To gain systematic insight, we model the effect of the connectivity of PbI6 octahedra on the band gap in idealized lead iodide perovskite-derived compounds. We find that increasing the connectivity from corner-, via edge-, to face sharing causes a significant increase in the band gap. This provides a new mechanism to tailor the optical properties in organic/inorganic hybrid compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据