4.7 Article

Mineralization of Methyl Orange azo dye by processes based on H2O2 electrogeneration at a 3D-like air-diffusion cathode

期刊

CHEMOSPHERE
卷 259, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127466

关键词

Azo dye; Gas-diffusion electrode; Hydrogen peroxide; Photoelectro-fenton; Water treatment

资金

  1. University of Guanajuato, Mexico [CIIC 113/2020]
  2. AEI/FEDER, EU [CTQ2016-78616R]
  3. AEI, Spain [PID2019-109291RB-I00]
  4. CONACYT (Mexico) [894987]

向作者/读者索取更多资源

This work addresses the mineralization of the widely used Methyl Orange (MO) azo dye by technologies based on H2O2 electrogeneration at a 3D-like air-diffusion cathode. These include two Fe2+-catalyzed processes such as electro-Fenton (EF) and photoelectro-Fenton (PEF). Bulk electrolyses were performed in a recirculation flow plant, in which the Eco-Cell filter-press electrochemical reactor was connected in series with a UVA photoreactor. The former reactor was equipped with a Ti|IreSneSb oxide plate anode alongside a 3D-like air-diffusion cathode made from graphite felt and hydrophobized carbon cloth, aimed at electrogenerating H2O2 on site. The influence of current density (j), volumetric flow rate (Q) and initial MO concentration was examined. The greatest oxidation power corresponded to PEF process. The best operation conditions to treat 30 mg L-1 of total organic carbon of MO in a 50 mM Na2SO4 solution by PEF were found at 0.50 mM Fe2+, pH 3.0, j = 20 mA cm(-2) and Q = 2.0 L min(-1), obtaining 100% and 94% of color and TOC removals at 30 and 240-300 min, respectively. This accounted for 35% of mineralization current efficiency and 0.12 kWh (g TOC)(-1) of energy consumption at the end of the electrolysis. The oxidation power of EF and PEF was compared with that of anodic oxidation (AO), and the sequence obtained was: PEF > EF > AO. The dye was gradually degraded, yielding non-toxic short carboxylic acids, like maleic, fumaric, formic, oxalic and oxamic, whose Fe(III) complexes were rapidly photolyzed. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据