4.5 Article

A cost-effective and green-reduced graphene oxide/polyurethane foam electrode for electrochemical applications

期刊

FLATCHEM
卷 20, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.flatc.2020.100162

关键词

3D graphene foam; Reduced graphene oxide; Ascorbic acid; Electrochemical behavior; Gold nanoparticles

向作者/读者索取更多资源

Three-dimensional graphene foams with interconnected and macroporous structure, high surface area and excellent electrochemical behavior are noticeably used as a substrate for other nanomaterials in electrochemical applications. Herein, a three-dimensional green reduced graphene oxide/polyurethane (3DrGO/PU) foam with a facile and cost-effective synthesis method has been developed. Accordingly, after coating the polyurethane foam by graphene oxide (GO), boiling ascorbic acid (AA) was used for GO reduction. Analytical tools and electrochemical investigations were applied for characterization and evaluation of the electrochemical behavior of the resulted electrode. Acceptable energy density in the range of supercapacitors (0.33 W h kg(-1)) and long-term stability during 1000 electrochemical cycles were observed for the 3DrGO/PU electrode. Finally, it was demonstrated that the gold nanoparticles (with about 300 nm diameter) can be easily electrodeposited on the 3DrGO/PU electrode. This work proposes a simple and green-produced 3D structure, which can be used as a nanohybrid electrode for future studies, including electrochemical sensors/biosensors and supercapacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据