4.7 Article

Degradation of the mixture of ethyl formate, propionic aldehyde, and acetone by Aeromonas salmonicida: A novel microorganism screened from biomass generated in the citric acid fermentation industry

期刊

CHEMOSPHERE
卷 258, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127320

关键词

Ethyl formate; Propionic aldehyde; Acetone; Degradation; Aeromonas salmonicida; Organic pollution

资金

  1. National Natural Science Foundation of China [41977142, 41601516]
  2. Key Technologies Research and Development Program [2019YFC1806104]
  3. Fundamental Research Funds for the Central Universities
  4. Foundation for Youth Scholars of Beijing Technology and Business University [QNJJ2017-09]

向作者/读者索取更多资源

Microorganisms play important roles in the degradation of volatile organic compounds. Aeromonas salmonicida strain (AEP-3) generated from biomass in the citric acid fermentation industry was screened and subjected to denaturing gradient gel electrophoresis (DGGE) fingerprinting and 16S rDNA gene sequencing. The growth conditions of AEP-3 in Luria-Bertani broth were optimized at 25 degrees C and approximately pH 7. AEP-3 was used to degrade ethyl formate, propionic aldehyde, or acetone alone and their mixture. The concentrations of ethyl formate, propionic aldehyde, and acetone were below 7500, 600, and 800 mg L-1, respectively, and their maximum degradation efficiencies were 100%, 92.41%, and 34.75%. AEP-3 first degraded acetone and propionic aldehyde in the mixture, followed by ethyl formate. The degradation pathways of these organic compounds in the mixture and their substrate interactions during degradation were explored. Propionic aldehyde was first converted into propionic acid in the metabolic process and was involved in the subsequent carboxylic acid cycle. By contrast, ethyl formate was first hydrolyzed into formic acid and ethanol. Then, formic acid participated in the cyclic metabolism of carboxylic acid, whereas, ethanol was hydrolyzed into acetaldehyde and acetic acid through alcohol and aldehyde dehydrogenase. Additionally, acetone directly interacted with nitrate in the medium under the action of hydrogen ions and produced carbon dioxide, water, and nitrogen. Overall, this study provides a new degrading bacterium biodegradability toward the exhaust gas of citric acid fermentation. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据